
Low-cost On-board Linux, Vision, Wi-Fi,
and more for the Roomba Robotics Base

Tod E. Kurt

ThingM Design
1126 Palm Terrace

Pasadena, CA 91104
tod@thingm.com

Abstract
The Roomba has become a rugged yet inexpensive
peripheral robotics platform. Remotely controlling it with a
desktop PC is well understood, but limits the utility as a
research robot. By providing a capable on-board
intelligence, the Roomba can be made autonomous and
enable the installation of additional senses and actuators.
With the addition of a sub-$100 wireless router, the Roomba
can cut the tether and have an on-board embedded Linux
system with built-in Wi-Fi and USB. The addition of USB
allows the use of a wide-range of additional peripherals
supported by Linux such as cameras, flash memory, and
other science payloads.

Motivation for Autonomous Roombas
The iRobot Roomba Open Interface (ROI) [1] is a simple
serial protocol that turns the robotic vacuum cleaner into a
controllable robot base with basic sensors. The release of
the protocol specification in late 2005 created an explosion
of robotics experimentation accessible to anyone with a
Roomba [2]. The physical interface of the ROI is RS-232-
like asynchronous serial, which can be converted to true
RS-232 via a serial tether [3] or accessed via a Bluetooth
adapter [4]. The logical interface is based on a data format
of 57.6 kbps, 8N1, with a command structure consisting of
one to five byte commands used to interrogate and actuate
the Roomba’s capabilities.

Others [5] have used the ROI to create robots as
peripherals to stationary computers running decision code.
Much can be learned with this peripheral robotics
approach. A next step would be the addition of on-board
intelligence to allow local processing of high-bandwidth
sensors, reduce processing loop lag, and experiment with
the design challenges of a fully autonomous system. To
allow the treatment of complex problems, the added
system should implement a true multi-tasking OS and be
able to accept a wide range of peripherals. Its only

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Roomba-related requirements are single serial port and a
small form-factor.

Figure 1 Capabilities of three common wireless routers.

Figure 2 Autonomous Linux Roomba utilizing a
WRTSL54GS, USB webcam, flash drive, and serial port.

Most low-power embedded computer systems with the
desired attributes are too expensive to deploy in large
numbers. In the same spirit of repurposing the Roomba as
a robotics platform, certain consumer wireless routers,
available for under $100, are capable of running embedded
Linux. These routers have integrated Wi-Fi, Ethernet, and
serial ports. Some have USB and IDE. Figure 1 shows the

capabilities of three different widely available routers used
as on-board Roomba controllers. With only two serial
ports, the WRT54GL has limited peripheral capabilities.
The WL-HDD is the lowest-cost alternative to offer USB.
Its need for a regulated power supply and relatively
mediocre CPU and memory make it only suitable if an IDE
interface is needed for a large datastore. Of the three, the
WRTSL54GS is the best performing option, with a faster
CPU than the WL-HDD and USB 2.0.

Embedded Linux with OpenWrt
The original WRT54G shipped with firmware based on
embedded Linux and the terms of the GPL allowed hackers
to easily inspect, modify, and improve its functionality [6].
Many consumer routers use the same chipset and are
amenable to similar hacking [7]. A variety of special-
purpose firmware projects have been created to run on
these devices. One of the most advanced alternatives to the
stock firmware is the OpenWrt project [8].

OpenWrt provides features similar to a modern package-
based Linux distribution: a built-in web server with CGI
support, an SSH server, and most importantly, a package
management tool, “ipkg”. Using ipkg, new applications,
tools and kernel drivers can be added and removed at
runtime, without requiring a reboot. OpenWrt is loaded
onto the prospective router by using the standard firmware
upgrade mechanism provided by the router. If desired,
OpenWrt can be removed the same way.

With OpenWrt installed, the router can be configured as a
wireless access point, a wireless client, or a member of an
ad-hoc network. The latter option allows mesh networks to
be created, requiring no networking infrastructure. This is
useful for experimenting with emergent or flocking
behaviors.

Hardware Peripheral Support in OpenWrt
Beyond the standard support for Wi-Fi and Ethernet
network devices built into the router, OpenWrt also has
drivers for various USB devices such as mass storage,
digital still cameras, webcams, and serial ports. USB hub
support means several of these devices can be connected
simultaneously. Multiples of the same device is also
possible, allowing stereo webcam vision or the connection
of several USB-to-serial adapters to control out-board
microcontroller-based systems.

For example, Figure 2 shows a Roomba Red ($70 for
factory refurbished) equipped with a $100 WRTSL54GS
running OpenWrt, a $30 webcam providing a real-time
JPEG-compressed video feed, a $20 USB-to-serial adapter
to connect to the Roomba, a $20 flash drive to archive the
JPEG stream, and a $10 USB hub to tie it all together.
Thus a complete semi-autonomous telepresence robot was
constructed for approximately $250.

Software Applications in OpenWrt
Almost any standard non-GUI Linux/Unix pogram can be
recompiled for use in OpenWrt, assuming it can fit in the
smaller memory footprint of the target router. The cross-
compilation and packaging techniques are simple and well
documented [9]. Installation of software uses the same
ipkg mechanism as for system packages. Both the system
[10] and the third-party [11] package libraries contain a
growing list of standard Linux tools and device drivers.
Controlling the Roomba from OpenWrt. As in the
desktop case, the Roomba is controlled via its ROI port,
connected to the router with a USB-to-serial adapter and
Roomba serial tether. Functionally this is the same as a
PC-controlled Roomba. In fact, the Roomba appears as a
serial port as in the desktop case and Unix/Linux code to
control the Roomba on a PC [12] can be recompiled with
no source changes to work in OpenWrt.
Controlling the System Remotely. Utilizing the fact that
OpenWrt contains a web server with basic CGI execution
capability, a web control panel can be created to directly
control and inspect the Roomba or on-board peripherals,
and to initiate higher-level behaviors. For the robot of
Figure 2, a small CGI webpage was created that displayed
a real-time JPEG webcam stream, telemetry data from all
sensors, and offered buttons to control Roomba movement
at both a low-level (turn right, stop) and a high-level (go
towards bright light, retrace steps). In lieu of user-based
control, web pages could be replaced with XML services to
allow machine parsing and control.

References
[1] iRobot Corp. 2006. “Roomba Open Interface”,
http://irobot.com/developers.
[2] Kurt, T. 2006. Hacking Roomba, Hoboken, NJ.: Wiley.
[3] Kurt, T. 2006. “Build a Roomba Serial Tether”,
http://hackingroomba.com/projects/build-a-roomba-serial-
tether/.
[4] Kurt, T. 2006. “Build a Roomba Bluetooth Adapter”,
http://hackingroomba.com/projects/build-a-roomba-
bluetooth-adapter/.
[5] Dodds, Z. and Tribelhorn, B. 2006. Erdos: Cost-
effective Peripheral Robotics for AI Education, AAAI.
[6] Weiss, A. 2005. “WRT54G Story”, Wi-Fi Planet,
http://www.wi-fiplanet.com/tutorials/article.php/3562391.
[7] OpenWrt. 2006. “Supported Devices”,
http://wiki.openwrt.org/TableOfHardware.
[8] OpenWrt. 2006. “OpenWrt”, http://openwrt.org/.
[9] OpenWrt. 2006. “Building Packages HowTo”
http://wiki.openwrt.org/BuildingPackagesHowTo.
[10] OpenWrt. 2006. “OpenWrt Packages”,
http://downloads.openwrt.org/whiterussian/packages/.
[11] ipkg.be team. 2006. “OpenWrt Package Repository
Tracker”, http://www.ipkg.be/.
[12] Kurt, T. 2006. “Embedded Linux and roombacmd”,
http://hackingroomba.com/code/embedded-linux/.

